LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of the grass LAI and CCC remote sensing-based models and their transferability using sentinel-2 data in heterogeneous grasslands

Photo from wikipedia

ABSTRACT Estimation of biophysical variables such as leaf area index (LAI) and canopy chlorophyll content (CCC) at high spatiotemporal resolution is important for managing natural and heterogeneous environments. However, accurate… Click to show full abstract

ABSTRACT Estimation of biophysical variables such as leaf area index (LAI) and canopy chlorophyll content (CCC) at high spatiotemporal resolution is important for managing natural and heterogeneous environments. However, accurate estimation of biophysical variables particularly over heterogeneous environments remains a challenge. The objective of the study was to develop locally parameterized grass LAI and CCC empirical models using the Sentinel-2 variables combined with the Stepwise multiple linear regression (SMLR) and Random forest (RF) at the Golden Gate Highlands National Park (GGHNP) and Marakele National Park (MNP) in South Africa. Results showed that in MNP, SMLR yielded better LAI estimation with root mean squared error (RMSE) of 0.67 m2.m−2 and mean adjusted error (MAE) of 0.54, explaining 48% of LAI variability, when bands and indices are combined. In contrast, RF gave better CCC estimation i.e. RMSE and MAE of 17.08 µg.cm−2 and 13.18 respectively, explaining about 40% of CCC variability with Sentinel-2 bands only. In GGHNP, the RF models provided the best estimates of both LAI and CCC compared to SMLR models. Furthermore, the CCC and LAI estimation models of GGHNP showed improved model accuracies when 50% and 75% of the MNP field samples were transferred to the GGHNP models. In contrast, the CCC and LAI estimation models of MNP showed a decline in model performance across all scenarios where the GGHNP field samples were transferred to the MNP models. These findings have significant implications for the development of locally parameterized types of models that can provide improved and consistent site-specific accurate estimates of grass biophysical parameters over heterogeneous environments.

Keywords: remote sensing; grass lai; using sentinel; ccc; estimation; lai ccc

Journal Title: International Journal of Remote Sensing
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.