LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Random forest method for analysis of remote sensing inversion of aboveground biomass and grazing intensity of grasslands in Inner Mongolia, China

Photo by kiranck123 from unsplash

ABSTRACT The quantification of grassland above-ground biomass (AGB) and grazing intensity (GI) and their distribution in space is of great significance to grassland management and eco-conservation. Remote-sensing technology is widely… Click to show full abstract

ABSTRACT The quantification of grassland above-ground biomass (AGB) and grazing intensity (GI) and their distribution in space is of great significance to grassland management and eco-conservation. Remote-sensing technology is widely applied, but it is difficult to measure accurately when monitoring GI. In this study, the neural network, random forest and statistical function models of the relationship between Landsat NDVI and AGB were constructed by field survey and literature data collection in Inner Mongolia grassland, China. By comparing the accuracy among the three models, we constructed a remote-sensing retrieving model of grass AGB. We also estimated the grassland AGB during the peak growing season (August) for Inner Mongolia. Frequency histograms were then made to identify AGB thresholds under four GI levels (light or ungrazed, moderate grazing, overgrazing and extreme grazing) for each of three grassland types (meadow steppe, typical steppe and desert steppe). This study shows that the random forest model simulates grass AGB more accurately than other models. The spatial distribution of AGB in Inner Mongolia grasslands showed a tendency of decreasing from southeast to northwest, with an increasing trend in the last 10 years. The four GI levels in 2021 accounted for 18%, 25%, 36% and 21% of the grasslands in Inner Mongolia, respectively, and over the last 10 years the GI first improved and then deteriorated. This study provides a guideline to remote monitoring for grassland AGB and GI, and supplies scientific support for sustainable management and grassland restoration of large-scale grasslands.

Keywords: grazing; remote sensing; agb; inner mongolia; random forest; grassland

Journal Title: International Journal of Remote Sensing
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.