Prolonged seizures are a hallmark feature of intoxication with anticholinesterase nerve agents such as soman. While benzodiazepine drugs are typically used to control these seizures, studies in both rats and… Click to show full abstract
Prolonged seizures are a hallmark feature of intoxication with anticholinesterase nerve agents such as soman. While benzodiazepine drugs are typically used to control these seizures, studies in both rats and guinea pigs have shown that potent, centrally acting anticholinergic drugs such as scopolamine can also terminate such seizures. The present study was performed to determine if scopolamine could produce similar anticonvulsant effects in a nonhuman primate model of soman intoxication. Adult male African green monkeys, implanted with telemetry devices to record cortical electroencephalographic activity, were pretreated with pyridostigmine (0.02 mg/kg, intramuscularly [im]) and 40 min later challenged with 15 µg/kg (im) of the nerve agent soman. One min after soman exposure the animals were treated with atropine (0.4 mg/kg, im) and the oxime 2-PAM (25.7 mg/kg, im). One min after the start of seizure activity the animals were administered scopolamine (0.01-0.1 mg/kg, im), using an up-down dosing design over successive animals. Scopolamine was highly effective in stopping soman-induced seizures with an ED50 = 0.0312 mg/kg (0.021-0.047 mg/kg = 95% confidence limits). Seizure control was rapid, with all epileptiform activity stopping on average 21.7 min after scopolamine treatment. A separate pK study showed that scopolamine absorption peaked approximately 10 min after im administration and a dose of 0.032 mg/kg produced maximum plasma levels of 17.62 ng/ml. The results show that scopolamine exerts potent and rapid anticonvulsant action against soman-induced seizures and that it may serve as a valuable adjunct to current antidote treatments for nerve agent intoxication.
               
Click one of the above tabs to view related content.