LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Further insights into the impact of rebamipide on gentamicin-induced nephrotoxicity in rats: modulation of SIRT1 and β-catenin/cyclin D1 pathways.

Photo by portablepeopleproductions from unsplash

Gentamicin (GM) is an effective antibiotic administered to treat acute Gram-negative infections. Nevertheless, its clinical application is limited due to nephrotoxicity. Therefore, our research aimed to investigate the potential renoprotective… Click to show full abstract

Gentamicin (GM) is an effective antibiotic administered to treat acute Gram-negative infections. Nevertheless, its clinical application is limited due to nephrotoxicity. Therefore, our research aimed to investigate the potential renoprotective impact of rebamipide (RBM), a gastroprotective drug, on GM-induced kidney damage in rats, as well as putative nephroprotective pathways. RBM was orally administered (100 mg/kg/d for 14 d) commencing 7 d before the administration of GM (100 mg/kg/d, intraperitoneally). Nephrotoxicity was elucidated, and the silent information regulator 1 (SIRT1) and β-catenin/cyclin D1 pathways were assessed. GM induced a significant elevation in the serum levels of creatinine, blood urea nitrogen (BUN), and kidney injury molecule-1 (KIM-1), as well as the relative kidney index. In addition, GM increased lipid peroxidation and lowered total antioxidant capacity (TAC) level and superoxide dismutase (SOD) activity. GM administration also demonstrated a significant amplification in tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), nuclear factor-κappa B p65 (NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), and caspase-3 kidney levels, as well as B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 ratio. Notably, RBM treatment amended all these changes induced by GM. Furthermore, the potential role of SIRT1 and β-catenin-dependent signaling pathways in GM-induced renal injury was assessed. Our findings showed that GM-treated rats demonstrated a substantial decrease in SIRT1, nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) along with an increase in β-catenin, forkhead box O-3a (FOXO-3a), and cyclin D1 protein expressions. RMB treatment markedly attenuated the deterioration caused by GM on these pathways. Additionally, RBM alleviated the GM-induced deleterious kidney tissue histopathology. In conclusion, our findings have verified that RBM can halt GM-induced renal injury by partly modulating SIRT1 and β-catenin pathways.

Keywords: sirt1 catenin; impact rebamipide; kidney; catenin; catenin cyclin

Journal Title: Drug and chemical toxicology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.