LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pentoxifylline inhibits phosgene-induced lung injury via improving hypoxia.

Photo by nhiamoua from unsplash

Inhalation of high concentrations of phosgene often causes pulmonary edema, which obstructs the airway and causes tissue hypoxia. There is currently no specific antidote. This study was performed to investigate… Click to show full abstract

Inhalation of high concentrations of phosgene often causes pulmonary edema, which obstructs the airway and causes tissue hypoxia. There is currently no specific antidote. This study was performed to investigate the effect behind pentoxifylline (PTX) treatment for phosgene-induced lung injury in rat models. Rats were exposed to phosgene. The protein levels of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and occludin proteins in lung tissue were determined. The effect of both prophylactic and therapeutic administration of PTX (50 mg/kg and 100 mg/kg) was evaluated. The lung permeability index and HIF-1α protein level increased, the arterial blood oxygenation index (PaO2/FIO2 ratio) and occludin protein level decreased significantly 6 h after phosgene exposure (P < 0.05). PTX exerted protective effects by HIF-1α-VEGF-occludin signaling pathway to some extent. Moreover, prophylactic, but not therapeutic administration of PTX (100 mg/kg), exhibited a significant protective effect. Pretreatment with PTX protected against phosgene-induced lung injury, possibly by inhibiting differential expression of HIF-1α, VEGF, and occludin.

Keywords: phosgene induced; induced lung; pentoxifylline; lung injury

Journal Title: Drug and chemical toxicology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.