LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of chlorpyrifos toxicity on brain, pseudobranchial neurosecretory system and swimming performance of a catfish, Heteropneustes fossilis.

Photo by fakurian from unsplash

In the present study, it was aimed to evaluate the adverse effects of CPF on the histopathology of the optic tectum and cerebellum, pseudobranchial neurosecretory system (PNS), biochemical assays of… Click to show full abstract

In the present study, it was aimed to evaluate the adverse effects of CPF on the histopathology of the optic tectum and cerebellum, pseudobranchial neurosecretory system (PNS), biochemical assays of brain tissue, and locomotory behavior in catfish, Heteropneustes fossilis. The fishes were exposed to an environmentally relevant concentration of 0.09 and 0.192 mg/L of CPF for 7, 15, and 30 d. The CPF toxicity induced degenerative changes with significantly decreased cell size, number, and nucleo-cytoplasmic (N/C) ratio of the PNS; and altered neuro-architectural pattern of optic tectum with degenerative changes in mononuclear and granular cells and necrotic variation in granular and Purkinje cells of the cerebellum. The Acetylcholinesterase (AChE) and Catalase (CAT) activity in the CPF-exposed brain was significantly decreased, whereas Superoxide dismutase (SOD) and Malondialdehyde (MDA) level was significantly increased in comparison with control. In CPF-exposed fishes, the respiratory movements and locomotory behavioral pattern like swimming speed, total distance traveled, time mobile, absolute turn angle, head: distance traveled, maximum speed were significantly decreased, whereas time immobile and time freezing episodes were significantly increased as compared to control fishes. The present study concludes that environmentally relevant concentration of CPF may induce histopathological, biochemical, physiological, and behavioral disturbances in a non-target organism, H. fossilis.

Keywords: pseudobranchial neurosecretory; catfish heteropneustes; brain; cpf; heteropneustes fossilis; neurosecretory system

Journal Title: Drug and chemical toxicology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.