ABSTRACT Actinobacteria is a dominant phylum in saline soil and play important roles in the process of organic matter decomposition and biogeochemical cycling. In this study, we investigated the diversity… Click to show full abstract
ABSTRACT Actinobacteria is a dominant phylum in saline soil and play important roles in the process of organic matter decomposition and biogeochemical cycling. In this study, we investigated the diversity and phylogeny of the haloalkaliphilic actinobacteria that inhabited the saline soil of Coastal Gujarat (India) using conventional and molecular approaches. The actinobacteria were diversified on the basis of their growth patterns, morphology, spore color and sugar utilization. The cultivated actinobacteria were genetically diverse, with the ability to grow at high salt concentrations. The salt resistance feature was widely distributed among the isolates and not confined to any particular phylogenetic cluster. The PCR -DGGE approach was used to assess molecular diversity and to mitigate the limitation of the 16S rRNA sequence approach. Reproducible band profiles confirmed that the PCR-DGGE provided an excellent tool for the 16S rDNA heterogeneity analysis. The migration behavior of the 16S rRNA genes on the DGGE gel suggested lack of correlation between the band numbers and α-diversity. The findings highlighted the trends associated with the microbial community and signify the role of the DGGE in distinguishing a group of species that exhibit 16S rRNA based phylogenetic relatedness with distinct phenotypic characters. Based on the 16S rRNA genes, the actinobacteria were identified as belong to Nocardiopsis, Brachybacterium, Streptomyces and Prauseria. Nocardiopsis was the most predominant actinobacterial genera. The study indicated that a combination of the conventional and molecular approaches could be highly significant in analyzing the diversity of the actinobacteria from the saline habitat.
               
Click one of the above tabs to view related content.