LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermal buckling and postbuckling analysis of piezoelectric FGM beams based on high-order shear deformation theory

Photo from wikipedia

ABSTRACT This article deals with the thermal buckling and postbuckling of functionally graded material (FGM) beams with surface-bonded piezoelectric actuators based on physical neutral surface concept and high-order shear deformation… Click to show full abstract

ABSTRACT This article deals with the thermal buckling and postbuckling of functionally graded material (FGM) beams with surface-bonded piezoelectric actuators based on physical neutral surface concept and high-order shear deformation theory including von Kármán strain–displacement relationships. The beams are exposed to a uniform temperature field and electric field, the material properties of FGM layers are temperature-dependent and vary in the thickness direction. The approximate solutions of piezoelectric FGM beams for thermal buckling and postbuckling are obtained by a two-step perturbation method, meanwhile, the analytical solutions of Timoshenko beam model and Euler beam model are also presented. The validity of the present work can be confirmed by comparisons with previous results. The effects of the applied actuator voltage, beam geometry as well as volume fraction index of FGM beam on the critical buckling temperature, and postbuckling load–deflection relationships are investigated.

Keywords: thermal buckling; shear deformation; buckling postbuckling; high order; fgm beams; order shear

Journal Title: Journal of Thermal Stresses
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.