ABSTRACT Automobile emissions are composed of NOx and unburned hydrocarbon that contribute significantly to major environmental and health issues. In this study, encapsulated Moringa oleifera beads (EMBs) were synthesized using… Click to show full abstract
ABSTRACT Automobile emissions are composed of NOx and unburned hydrocarbon that contribute significantly to major environmental and health issues. In this study, encapsulated Moringa oleifera beads (EMBs) were synthesized using Moringa oleifera pod powder that was cross-linked with calcium alginate and used as a biosorbent for reducing the emission gas concentrations from the single-cylinder diesel engine. The breakthrough curve was attained from single and double stage of fixed bed column by the influence of temperature ranging from (80°C–120°C) ± 5°C with a feed flow rate varying from 8 to 10 kg hr–1 and bed height varying from 15 to 30 cm. Based on the experimental results, the maximum biosorption capacity (qo) was found to be 14.45 and 123.51 mg g–1 for HC and NOx, respectively, and was obtained at 80°C–90°C with double stage of BH–30cm under flow rate of 8 kg hr–1. Further, breakthrough curves were investigated, and the experimental data were fitted using well-established models like Thomas, Yoon–Nelson, and Wang models. In addition, mass transfer models like Weber–Morris and Boyd were investigated to identify the rate-limiting step of the overall biosorption process.
               
Click one of the above tabs to view related content.