LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Environmental water remediation using covalently functionalized zerovalent iron nanocomposites with 2-pyridinecarboxaldehyde via 3-aminopropyltrimethoxysilane and ethylenediamine

Photo by eriic from unsplash

ABSTRACT The adsorption technology involving nano zerovalent iron (NZVI) has been widely employed to remediate polluted water based on a number of economic aspects. However, this technology is facing a… Click to show full abstract

ABSTRACT The adsorption technology involving nano zerovalent iron (NZVI) has been widely employed to remediate polluted water based on a number of economic aspects. However, this technology is facing a high challenge in the removal process of pollutants due to hydrolysis and stability characteristics of zerovalent iron. Therefore, this study is aimed to demonstrate a method for encapsulation and functionalization of NZVI nanoparticles with 3-aminopropyltrimethoxysilane (NH2) and 2-pyridinecarboxaldehyde (PY), respectively to produce the target nanocomposite (NZVI-NH2-PY). Zerovalent iron nanoparticles are also aimed to functionalize with ethylenediamine (ED) and 2-pyridine carboxaldehyde to produce NZVI-ED-PY nanocomposite. The TEM images showed that the sizes of NZVI-NH2-PY and NZVI-ED-PY nanocomposites are in the range 3.33–4.35 and 5.42–10.36 nm, respectively. More characterization evidences were concluded by thermal gravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The two novel magnetic nanocomposites have been used for removal of Co(II), Zn(II), Pb(II), Cd(II), Hg(II), Cu(II) beside radioactive isotopes (65Zn and 60Co) from water. NZVI-NH2-PY nanocomposite was more selective toward Hg(II), Pb(II) and Cd(II), while NZVI-ED-PY was more selective toward Z(II), Co(II) and Co(II). Different kinetic models were applied and the investigated metal ions were characterized to undergo the pseudo-second order using both NZVI-NH2-PY and NZVI-ED-PY nanocomposites.

Keywords: zerovalent iron; zerovalent; nzvi nh2; water

Journal Title: Separation Science and Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.