Abstract A single-channel FIFO queueing model with finite buffer capacity and the multiple vacation policy is investigated, in which jobs arrive according to a compound Poisson process and are being… Click to show full abstract
Abstract A single-channel FIFO queueing model with finite buffer capacity and the multiple vacation policy is investigated, in which jobs arrive according to a compound Poisson process and are being processed individually with a general-type distribution function of the service time. A multiple vacation period, consisting of a number of independent generally-distributed server vacations, is being started each time when the system becomes empty. During this period, the processing of jobs is suspended. Successive server vacations are being initialised until at least one job is present in the buffer at the completion epoch of one of them. A compact formula for the Laplace transform of the distribution of the time to the first buffer overflow, conditioned by initial number of packets present in the buffer, is found. The analytical approach is based on the paradigm of embedded Markov chain, integral equations and Korolyuk’s potential idea. Numerical illustrating examples are attached as well.
               
Click one of the above tabs to view related content.