LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Function-on-Function Linear Regression by Signal Compression

ABSTRACT We consider functional linear regression models with a functional response and multiple functional predictors, with the goal of finding the best finite-dimensional approximation to the signal part of the… Click to show full abstract

ABSTRACT We consider functional linear regression models with a functional response and multiple functional predictors, with the goal of finding the best finite-dimensional approximation to the signal part of the response function. Defining the integrated squared correlation coefficient between a random variable and a random function, we propose to solve a penalized generalized functional eigenvalue problem, whose solutions satisfy that projections on the original predictors generate new scalar uncorrelated variables and these variables have the largest integrated squared correlation coefficient with the signal function. With these new variables, we transform the original function-on-function regression model to a function-on-scalar regression model whose predictors are uncorrelated, and estimate the model by penalized least-square method. This method is also extended to models with both multiple functional and scalar predictors. We provide the asymptotic consistency and the corresponding convergence rates for our estimates. Simulation studies in various settings and for both one and multiple functional predictors demonstrate that our approach has good predictive performance and is very computational efficient. Supplementary materials for this article are available online.

Keywords: function linear; regression; linear regression; function function; multiple functional; function

Journal Title: Journal of the American Statistical Association
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.