LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Frequentist Consistency of Variational Bayes

Photo by tamiminaser from unsplash

ABSTRACT A key challenge for modern Bayesian statistics is how to perform scalable inference of posterior distributions. To address this challenge, variational Bayes (VB) methods have emerged as a popular… Click to show full abstract

ABSTRACT A key challenge for modern Bayesian statistics is how to perform scalable inference of posterior distributions. To address this challenge, variational Bayes (VB) methods have emerged as a popular alternative to the classical Markov chain Monte Carlo (MCMC) methods. VB methods tend to be faster while achieving comparable predictive performance. However, there are few theoretical results around VB. In this article, we establish frequentist consistency and asymptotic normality of VB methods. Specifically, we connect VB methods to point estimates based on variational approximations, called frequentist variational approximations, and we use the connection to prove a variational Bernstein–von Mises theorem. The theorem leverages the theoretical characterizations of frequentist variational approximations to understand asymptotic properties of VB. In summary, we prove that (1) the VB posterior converges to the Kullback–Leibler (KL) minimizer of a normal distribution, centered at the truth and (2) the corresponding variational expectation of the parameter is consistent and asymptotically normal. As applications of the theorem, we derive asymptotic properties of VB posteriors in Bayesian mixture models, Bayesian generalized linear mixed models, and Bayesian stochastic block models. We conduct a simulation study to illustrate these theoretical results. Supplementary materials for this article are available online.

Keywords: variational bayes; variational approximations; frequentist consistency; consistency variational

Journal Title: Journal of the American Statistical Association
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.