LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inferring Atmospheric Release Characteristics in a Large Computer Experiment Using Bayesian Adaptive Splines

Photo by intenzafitness from unsplash

Abstract An atmospheric release of hazardous material, whether accidental or intentional, can be catastrophic for those in the path of the plume. Predicting the path of a plume based on… Click to show full abstract

Abstract An atmospheric release of hazardous material, whether accidental or intentional, can be catastrophic for those in the path of the plume. Predicting the path of a plume based on characteristics of the release (location, amount, and duration) and meteorological conditions is an active research area highly relevant for emergency and long-term response to these releases. As a result, researchers have developed particle dispersion simulators to provide plume path predictions that incorporate release characteristics and meteorological conditions. However, since release characteristics and meteorological conditions are often unknown, the inverse problem is of great interest, that is, based on all the observations of the plume so far, what can be inferred about the release characteristics? This is the question we seek to answer using plume observations from a controlled release at the Diablo Canyon Nuclear Power Plant in Central California. With access to a large number of evaluations of a computationally expensive particle dispersion simulator that includes continuous and categorical inputs and spatio-temporal output, building a fast statistical surrogate model (or emulator) presents many statistical challenges, but is an essential tool for inverse modeling and sensitivity analysis. We achieve accurate emulation using Bayesian adaptive splines to model weights on empirical orthogonal functions. We use this emulator as well as appropriately identifiable simulator discrepancy and observational error models to calibrate the simulator, thus finding a posterior distribution of characteristics of the release. Since the release was controlled, these characteristics are known, making it possible to compare our findings to the truth. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Keywords: adaptive splines; atmospheric release; using bayesian; release characteristics; bayesian adaptive; release

Journal Title: Journal of the American Statistical Association
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.