LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Empirical Frequency Band Analysis of Nonstationary Time Series

Photo from wikipedia

Abstract The time-varying power spectrum of a time series process is a bivariate function that quantifies the magnitude of oscillations at different frequencies and times. To obtain low-dimensional, parsimonious measures… Click to show full abstract

Abstract The time-varying power spectrum of a time series process is a bivariate function that quantifies the magnitude of oscillations at different frequencies and times. To obtain low-dimensional, parsimonious measures from this functional parameter, applied researchers consider collapsed measures of power within local bands that partition the frequency space. Frequency bands commonly used in the scientific literature were historically derived, but they are not guaranteed to be optimal or justified for adequately summarizing information from a given time series process under current study. There is a dearth of methods for empirically constructing statistically optimal bands for a given signal. The goal of this article is to provide a standardized, unifying approach for deriving and analyzing customized frequency bands. A consistent, frequency-domain, iterative cumulative sum based scanning procedure is formulated to identify frequency bands that best preserve nonstationary information. A formal hypothesis testing procedure is also developed to test which, if any, frequency bands remain stationary. The proposed method is used to analyze heart rate variability of a patient during sleep and uncovers a refined partition of frequency bands that best summarize the time-varying power spectrum. Supplementary materials for this article are available online.

Keywords: frequency bands; time series; frequency; time; empirical frequency

Journal Title: Journal of the American Statistical Association
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.