LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimal Permutation Recovery in Permuted Monotone Matrix Model

Photo by thinkmagically from unsplash

Abstract Motivated by recent research on quantifying bacterial growth dynamics based on genome assemblies, we consider a permuted monotone matrix model , where the rows represent different samples, the columns… Click to show full abstract

Abstract Motivated by recent research on quantifying bacterial growth dynamics based on genome assemblies, we consider a permuted monotone matrix model , where the rows represent different samples, the columns represent contigs in genome assemblies and the elements represent log-read counts after preprocessing steps and Guanine-Cytosine (GC) adjustment. In this model, Θ is an unknown mean matrix with monotone entries for each row, Π is a permutation matrix that permutes the columns of Θ, and Z is a noise matrix. This article studies the problem of estimation/recovery of Π given the observed noisy matrix Y. We propose an estimator based on the best linear projection, which is shown to be minimax rate-optimal for both exact recovery, as measured by the 0-1 loss, and partial recovery, as quantified by the normalized Kendall’s tau distance. Simulation studies demonstrate the superior empirical performance of the proposed estimator over alternative methods. We demonstrate the methods using a synthetic metagenomics dataset of 45 closely related bacterial species and a real metagenomic dataset to compare the bacterial growth dynamics between the responders and the nonresponders of the IBD patients after 8 weeks of treatment. Supplementary materials for this article are available online.

Keywords: recovery; matrix model; matrix; permuted monotone; monotone matrix

Journal Title: Journal of the American Statistical Association
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.