LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Forecasting Unemployment Using Internet Search Data via PRISM

Photo from wikipedia

Abstract Big data generated from the Internet offer great potential for predictive analysis. Here we focus on using online users’ Internet search data to forecast unemployment initial claims weeks into… Click to show full abstract

Abstract Big data generated from the Internet offer great potential for predictive analysis. Here we focus on using online users’ Internet search data to forecast unemployment initial claims weeks into the future, which provides timely insights into the direction of the economy. To this end, we present a novel method Penalized Regression with Inferred Seasonality Module (PRISM), which uses publicly available online search data from Google. PRISM is a semiparametric method, motivated by a general state-space formulation, and employs nonparametric seasonal decomposition and penalized regression. For forecasting unemployment initial claims, PRISM outperforms all previously available methods, including forecasting during the 2008–2009 financial crisis period and near-future forecasting during the COVID-19 pandemic period, when unemployment initial claims both rose rapidly. The timely and accurate unemployment forecasts by PRISM could aid government agencies and financial institutions to assess the economic trend and make well-informed decisions, especially in the face of economic turbulence.

Keywords: forecasting unemployment; internet search; prism; unemployment; search data

Journal Title: Journal of the American Statistical Association
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.