Abstract Obesity increases the risk of advanced prostate cancer (PCa). The calcium sensing receptor (CaSR) has been shown to be responsive to obesity-mediated cytokines and is upregulated in metastatic PCa.… Click to show full abstract
Abstract Obesity increases the risk of advanced prostate cancer (PCa). The calcium sensing receptor (CaSR) has been shown to be responsive to obesity-mediated cytokines and is upregulated in metastatic PCa. This study used a novel in vitro approach, involving the exposure of PCa cells to sera, from obese or normal weight males, and to CaSR inhibitor NPS-2143. Cell viability was determined using MTT assay. MMP-9 activity and invasion were assessed using zymography and invasion chambers, respectively. Microscopy was used to visualize EMT proteins. qRT-PCR and immunoblot analysis were used to quantify changes in genes and proteins important for tumorigenesis. Exposure to obese sera increased the proliferation, and the invasive capacity of PCa cells and de-localized epithelial-mesenchymal transition markers, which were attenuated with CaSR inhibition. Exposure to obese sera upregulated mRNA expression of PTHrP and protein expression of COX-2, IL-6, and CaSR. Inhibition of CaSR downregulated the mRNA expression of PTHrP and RANK, and protein expression of pERK and TNF-α. Obesity was shown to increase invasion and upregulate the expression of genes and proteins involved in PCa tumorigenesis. CaSR inhibition downregulated the expression of several of these factors. Thus, CaSR is a potentially important protein to target in obesity-mediated PCa progression.
               
Click one of the above tabs to view related content.