LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design factors for reducing ice adhesion

Photo from wikipedia

Abstract The purpose of this study was to investigate the relationships between a type of engineering material and the ice adhesion strength while in direct application in icing conditions. Ice… Click to show full abstract

Abstract The purpose of this study was to investigate the relationships between a type of engineering material and the ice adhesion strength while in direct application in icing conditions. Ice adhesion tests were conducted on various materials with different surface conditions. There is an identified need for systematic studies on the effects of varying surface conditions with well-characterized roughness and accurate adhesion measurement. This information is key in understanding the adhering behaviour of ice which is a necessary prerequisite for modelling the behaviour of ice adhesion to other surfaces and for icing prevention. Results show that the type of material will determine, in large, the strength of the ice adhesion between surfaces with similar roughness characteristics and the receding contact angle of water can be used as a predictor of relative ice adhesion. The adhesive strength of ice can be increased or decreased dramatically by means of adjusting the surface roughness with a uniform process. Each material tested exhibits a similar linear relationship. There was a stark contrast in the ice adhesion between the varying materials despite very similar polished surface conditions and static water contact angles. Ice bonded to the glass surface with an adhesion of 1562 ± 113 kPa, and to aluminum at 1039 ± 117 kPa, and stainless steel at 1022 ± 115 kPa, and finally Teflon at only 33 ± 52 kPa and during 80% of trials the ice/substrate interface was broken with no measured adhesion. The information gathered can be used to improve designs for a number of devices needed in cold weather climates.

Keywords: ice adhesion; design factors; adhesion; surface conditions; ice

Journal Title: Journal of Adhesion Science and Technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.