LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strength and bonding characteristics of adhesive joints with surface-treated titanium-alloy substrates

Photo by majesticlukas from unsplash

Abstract This paper presents a study on the effect of surface treatments on the mechanical behavior of adhesively bonded titanium alloy joints. Several different treatments were selected for the preparation… Click to show full abstract

Abstract This paper presents a study on the effect of surface treatments on the mechanical behavior of adhesively bonded titanium alloy joints. Several different treatments were selected for the preparation of Ti-6Al-4V alloy faying surfaces, and bonded joints were fabricated using surface-treated titanium alloy substrates and a film adhesive. Tensile tests were performed on single-lap specimens to evaluate the joint strength and to assess the failure mode, i.e. cohesive failure, adhesive (interfacial) failure or a mix of both. Contact angle measurements were also carried out, and the surface free energies of titanium alloys and the thermodynamic works of adhesion for the adhesive/titanium alloy interfaces were obtained. A three-dimensional finite element analysis was used to predict the strength of the specimens exhibiting cohesive failure. In addition, an expression of the relationship between the joint strength corresponding to interfacial failure and the thermodynamic work of adhesion was introduced based on the cohesive zone model (CZM) concept. It is shown that two surface treatments, Itro treatment and Laseridge, lead to cohesive failure and a significant increase in the joint strength, and the numerically predicted strength values are fairly close to the experimental values. These surface treatments are possible replacements for the traditional surface treatment processes. For degreasing, emery paper abrasion, atmospheric plasma treatment, sulfuric acid anodizing, nano adhesion technology and high-power lasershot, the specimens fail at the adhesive/substrate interface and the joint strength increases linearly with the thermodynamic work of adhesion as expected from our CZM-based expression.

Keywords: strength; alloy; titanium alloy; surface treated; failure

Journal Title: Journal of Adhesion Science and Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.