LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Foliar-applied trehalose modulates growth, mineral nutrition, photosynthetic ability, and oxidative defense system of rice (Oryza sativa L.) under saline stress

Photo by milkbox from unsplash

ABSTRACT A tub experiment was conducted to assess the effect of exogenously applied trehalose (0, 10, and 20 mM) on various attributes of two rice cultivars (Bas-385 and Bas-2000) under… Click to show full abstract

ABSTRACT A tub experiment was conducted to assess the effect of exogenously applied trehalose (0, 10, and 20 mM) on various attributes of two rice cultivars (Bas-385 and Bas-2000) under salt stress (0, 50, 100, and 150 mM). Salinity decreased growth, gas exchange characteristics, shoot and root potassium (K+) ions, hydrogen peroxide (H2O2), total soluble proteins, activity of catalase (CAT), and yield attributes, while it increased chlorophyll contents, shoot and root sodium (Na+) and calcium (Ca2+), malondialdehyde (MDA), glycinebetain (GB), free proline, and peroxidase (POD) activity. Foliar-applied trehalose improved growth attributes, net photosynthetic rate, GB, total soluble proteins, superoxide dismutase (SOD) and yield. Yield was not obtained at 150 mM salt stress. The rice cultivar Bas-2000 showed better performance with respect to gas exchange attributes and activities of enzymatic antioxidants. Overall, varying levels of foliar-applied trehalose proved to be effective in ameliorating adverse effects of salt stress on rice.

Keywords: foliar applied; rice; applied trehalose; nutrition; stress; growth

Journal Title: Journal of Plant Nutrition
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.