LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced dispersion stability of supramolecular complexes of single-walled carbon nanotubes with fluorene-based conjugated polymers

Photo from wikipedia

ABSTRACT Supramolecular complexes of single-walled carbon nanotubes (SWNTs) with poly(9,9-didodecylfluorene-2,7-diyl) (PF) derivatives were prepared using a solution dispersion process. A series of novel conjugated PF polymers with carboxyl or hydroxyl… Click to show full abstract

ABSTRACT Supramolecular complexes of single-walled carbon nanotubes (SWNTs) with poly(9,9-didodecylfluorene-2,7-diyl) (PF) derivatives were prepared using a solution dispersion process. A series of novel conjugated PF polymers with carboxyl or hydroxyl end groups at both ends were synthesized by the Yamamoto-type coupling of 2,7-dibromo-9,9-didodecylfluorene using Ni(COD)2 as a catalyst, and further end-capped with either 4-bromobenzoic acid or 4-bromobenzyl alcohol to obtain the end-functionalized PF with different terminal groups. An α-monocarboxy-ω-mono-methoxy poly(ethylene glycol) was connected to both ends of the PF-containing hydroxyl end groups to produce triblock copolymers of poly(ethylene glycol)-b-polyfluorene-b-poly(ethylene glycol) (PEO-b-PF-b-PEO). These SWNTs were completely wrapped with the conjugated polymers through π–π interactions, which enhanced the solubility of the SWNT complexes in organic media, and prevented the aggregation of the polymer–SWNT complexes into large bundles. This indicates that the dispersion stability of SWNTs is enhanced by the addition of the conjugated polymers. GRAPHICAL ABSTRACT

Keywords: supramolecular complexes; complexes single; walled carbon; conjugated polymers; single walled; dispersion

Journal Title: Journal of Dispersion Science and Technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.