ABSTRACT A simple synthesis route for amine protected-introduced-released chitosan (APIR-CS) was investigated to improve the adsorption of anionic dyes. The C2 amine groups of the chitosan (CS) were initially protected… Click to show full abstract
ABSTRACT A simple synthesis route for amine protected-introduced-released chitosan (APIR-CS) was investigated to improve the adsorption of anionic dyes. The C2 amine groups of the chitosan (CS) were initially protected via a Schiff-base reaction by benzaldehyde. They were then synthesized by the introduction of ethylenediamine into C6 hydroxyl groups on CS via epichlorohydrin. The final product was obtained after removal of the Schiff base with dilute hydrochloride solution. Amine-introduced chitosan (AI-CS) was directly synthesized at the C2 amine groups. The adsorbents were characterized by FTIR, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). For Congo red (CR) and methyl orange (MO), most of the amine groups in CS were converted to–N˭CH2 groups after the benzaldehyde treatment. Hydrochloric acid treatment after the cross-linking reaction released protected nitrogen atoms into the form of the primary amine again. APIR-CS had significantly greater adsorption capacities than AI-CS. The increased adsorption performance was attributed to the large number of primary amine groups on the surfaces. The adsorption mechanism was based on electrostatic interaction, while the adsorption process was mainly physisorption. GRAPHICAL ABSTRACT
               
Click one of the above tabs to view related content.