LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular dynamics simulation on influence of temperature effect on electro-coalescence behavior of nano-droplets

Photo from wikipedia

ABSTRACT In electric dehydration of crude oil, the dewatering efficiency can be improved by raising emulsion temperature properly which reduces the viscosity of crude oil. However, it should be noticed… Click to show full abstract

ABSTRACT In electric dehydration of crude oil, the dewatering efficiency can be improved by raising emulsion temperature properly which reduces the viscosity of crude oil. However, it should be noticed that the emulsion temperature does not only affect the emulsion viscosity but also nano-droplets dynamics behavior which impacts the coalescence efficiency either. Therefore the influence of temperature effect on the electro-coalescence of nano-droplets is studied by a molecular dynamics method. The results show that the temperature presents an active or negative effect, depending on the competitive relation between electrostatic interaction and thermal motion. Two stages are distinguished according to the dominant mechanism. During stage I, governed by the electrostatic interaction, lower temperature promotes the polarization and leads to an acceleration of the droplets coalescence, but higher temperature restrains the coalescence process due to molecules thermal motion breaking the polarization process. During stage II, governed by the thermal motion, lower temperature improves the coalescence because of a diffusion effect, but higher temperature deteriorates electro-coalescence because of a violent molecular thermal motion. Additionally, hydrogen bond and radial distribution functions are obtained by statistics to describe droplets micromorphology, which explains the reason why the droplet forms longer chain structure at the critical electric field. GRAPHICAL ABSTRACT

Keywords: electro coalescence; temperature; influence temperature; coalescence; effect; nano droplets

Journal Title: Journal of Dispersion Science and Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.