LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergistic interactions between zwitterionic surfactants derived from olive oil and an anionic surfactant

Photo from wikipedia

Abstract The surface properties of the mixtures of zwitterionic surfactants derived from olive oil (carboxylbetaine-OCB and sulfobetaine-OSB) and anionic surfactant-sodium dodecylbenzene sulfonate (SDBS) at different mole fractions were investigated by… Click to show full abstract

Abstract The surface properties of the mixtures of zwitterionic surfactants derived from olive oil (carboxylbetaine-OCB and sulfobetaine-OSB) and anionic surfactant-sodium dodecylbenzene sulfonate (SDBS) at different mole fractions were investigated by surface tension measurement. The influences of the addition of inorganic salts (NaCl, MgCl2) on the surface activities in OCB/SDBS and OSB/SDBS systems were also studied. The result shows that the two mixed systems possess lower CMC values and higher surface activities over all mole fractions studied than their individual components. Meanwhile, the noticeable synergistic interactions of OCB/SDBS and OSB/SDBS were determined by the micelle interaction parameter (βm) according to regular solution theory. It is observed that the mixed OCB/SDBS system at αOCB = 0.6 and the mixed OSB/SDBS system at αOSB = 0.6 exhibit the strongest synergism. In addition, the binary surfactant mixtures performed better surface activities upon addition of inorganic salts and the different valence state of mental ions of the inorganic salts had different surface ability effect on the mixed system: Mg2+ > Na+. Graphical Abstract

Keywords: zwitterionic surfactants; anionic surfactant; surfactants derived; surface; derived olive; olive oil

Journal Title: Journal of Dispersion Science and Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.