LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-dimensional rank-based graphical models for non-Gaussian functional data

Photo by lukechesser from unsplash

We study high-dimensional graphical models for non-Gaussian functional data. To relax the Gaussian assumption, we consider the functional Gaussian copula graphical model proposed by Solea and Li [Copula Gaussian graphical… Click to show full abstract

We study high-dimensional graphical models for non-Gaussian functional data. To relax the Gaussian assumption, we consider the functional Gaussian copula graphical model proposed by Solea and Li [Copula Gaussian graphical models for functional data. J Am Stat Assoc. 2022;117(538):781–793]. To estimate robustly the conditional independence relationships among the functions, we propose a new rank-based correlation operator, the Kendall's tau correlation operator that extends the Kendall's tau correlation matrix at the functional setting. We establish new concentration inequalities and bounds of the rank-based estimator, which guarantee graph estimation consistency. We consider both completely and partially observed functional data, while allowing the graph size to grow with the sample size and accounting for the errors in the estimated functional principal components scores. We illustrate the finite sample properties of our method through simulation studies and a brain data set collected from functional magnetic resonance imaging for ADHD subjects.

Keywords: models non; functional data; rank based; high dimensional; graphical models

Journal Title: Statistics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.