LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Folate-decorated and NIR-activated nanoparticles based on platinum(IV) prodrugs for targeted therapy of ovarian cancer

Photo from wikipedia

Abstract Platinum-based drugs are used to treat a variety of cancers but have many side effects such as nephrotoxicity and neurotoxicity. A folate-decorated nanoparticles system with a good drug payload… Click to show full abstract

Abstract Platinum-based drugs are used to treat a variety of cancers but have many side effects such as nephrotoxicity and neurotoxicity. A folate-decorated nanoparticles system with a good drug payload can selectively deliver drugs into folate receptor (FR)-overexpressing cancer cells to prevent the shortcomings of platinum-based chemotherapy. Here, folate-decorated and near-infrared (NIR) laser-activated nanoparticles (abbreviated as PtIV-FINPs) were prepared via ultrasonic self-assembling of platinum(IV) prodrug c,c,t-Pt(NH3)2Cl2(OOCCH2CH2COOH)2, folic acid (FA)-functionalized lipid DSPE-PEG-FA and NIR fluorescent dye indocyanine green (ICG). The obtained PtIV-FINPs had almost spherical shape with a mean diameter about 100 nm. In vitro cellular uptake, cytotoxicity assays revealed that upon NIR irradiation, PtIV-FINPs further enhanced cellular uptake and generated higher cytotoxicity against human ovarian carcinoma SKOV3 cells than non-targeted or non-NIR activated nanoparticles. Thus, the multifunctional nanoparticles have potential to be developed as an attractive drug delivery system for effective chemotherapy against FR-overexpressing cells.

Keywords: platinum; cancer; activated nanoparticles; folate decorated; nir activated

Journal Title: Journal of Microencapsulation
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.