LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A robust statistical approach to select adequate error distributions for financial returns

Photo by markusspiske from unsplash

ABSTRACT In this article, we propose a robust statistical approach to select an appropriate error distribution, in a classical multiplicative heteroscedastic model. In a first step, unlike to the traditional… Click to show full abstract

ABSTRACT In this article, we propose a robust statistical approach to select an appropriate error distribution, in a classical multiplicative heteroscedastic model. In a first step, unlike to the traditional approach, we do not use any GARCH-type estimation of the conditional variance. Instead, we propose to use a recently developed nonparametric procedure [31]: the local adaptive volatility estimation. The motivation for using this method is to avoid a possible model misspecification for the conditional variance. In a second step, we suggest a set of estimation and model selection procedures (Berk–Jones tests, kernel density-based selection, censored likelihood score, and coverage probability) based on the so-obtained residuals. These methods enable to assess the global fit of a set of distributions as well as to focus on their behaviour in the tails, giving us the capacity to map the strengths and weaknesses of the candidate distributions. A bootstrap procedure is provided to compute the rejection regions in this semiparametric context. Finally, we illustrate our methodology throughout a small simulation study and an application on three time series of daily returns (UBS stock returns, BOVESPA returns and EUR/USD exchange rates).

Keywords: select adequate; statistical approach; error; robust statistical; approach select; approach

Journal Title: Journal of Applied Statistics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.