LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bayesian variable selection and coefficient estimation in heteroscedastic linear regression model

Photo by aleexcif from unsplash

ABSTRACT In many real applications, such as econometrics, biological sciences, radio-immunoassay, finance, and medicine, the usual assumption of constant error variance may be unrealistic. Ignoring heteroscedasticity (non-constant error variance), if… Click to show full abstract

ABSTRACT In many real applications, such as econometrics, biological sciences, radio-immunoassay, finance, and medicine, the usual assumption of constant error variance may be unrealistic. Ignoring heteroscedasticity (non-constant error variance), if it is present in the data, may lead to incorrect inferences and inefficient estimation. In this paper, a simple and effcient Gibbs sampling algorithm is proposed, based on a heteroscedastic linear regression model with an penalty. Then, a Bayesian stochastic search variable selection method is proposed for subset selection. Simulations and real data examples are used to compare the performance of the proposed methods with other existing methods. The results indicate that the proposal performs well in the simulations and real data examples. R code is available upon request.

Keywords: estimation; linear regression; selection; regression model; heteroscedastic linear; variable selection

Journal Title: Journal of Applied Statistics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.