LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Variance estimation based on blocked 3×2 cross-validation in high-dimensional linear regression

Photo from wikipedia

In high-dimensional linear regression, the dimension of variables is always greater than the sample size. In this situation, the traditional variance estimation technique based on ordinary least squares constantly exhibits… Click to show full abstract

In high-dimensional linear regression, the dimension of variables is always greater than the sample size. In this situation, the traditional variance estimation technique based on ordinary least squares constantly exhibits a high bias even under sparsity assumption. One of the major reasons is the high spurious correlation between unobserved realized noise and several predictors. To alleviate this problem, a refitted cross-validation (RCV) method has been proposed in the literature. However, for a complicated model, the RCV exhibits a lower probability that the selected model includes the true model in case of finite samples. This phenomenon may easily result in a large bias of variance estimation. Thus, a model selection method based on the ranks of the frequency of occurrences in six votes from a blocked 3×2 cross-validation is proposed in this study. The proposed method has a considerably larger probability of including the true model in practice than the RCV method. The variance estimation obtained using the model selected by the proposed method also shows a lower bias and a smaller variance. Furthermore, theoretical analysis proves the asymptotic normality property of the proposed variance estimation.

Keywords: cross validation; model; variance estimation; variance

Journal Title: Journal of Applied Statistics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.