LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heteroscedastic partially linear model under skew-normal distribution with application in ragweed pollen concentration

Photo by thinkmagically from unsplash

We introduce a new class of heteroscedastic partially linear model (PLM) with skew-normal distribution. Maximum likelihood estimation of the model parameters by the ECM algorithm (Expectation/Conditional Maximization) as well as… Click to show full abstract

We introduce a new class of heteroscedastic partially linear model (PLM) with skew-normal distribution. Maximum likelihood estimation of the model parameters by the ECM algorithm (Expectation/Conditional Maximization) as well as influence diagnostics for the new model are investigated. In addition, a Likelihood Ratio test for assessing the homogeneity of the scale parameter is presented. Simulation studies for assessing the performance of the ECM algorithm and the Likelihood Ratio test statistics for homogeneity of variance are developed. Also, a study for misspecification of the structure function is considered. Finally, an application of the new heteroscedastic PLM to a real data set on ragweed pollen concentration is presented to show that it provides a better fit than the classic homocedastic PLM. We hope that the proposed model may attract applications in different areas of knowledge.

Keywords: linear model; normal distribution; heteroscedastic partially; model; partially linear; skew normal

Journal Title: Journal of Applied Statistics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.