Fe63Cr8Mo3.5Ni5P10B4C4Si2.5 amorphous coatings have been prepared by the activated combustion high velocity air fuel (AC-HVAF) and high velocity oxygen fuel (HVOF) processes. The microstructure and wear resistance of the amorphous… Click to show full abstract
Fe63Cr8Mo3.5Ni5P10B4C4Si2.5 amorphous coatings have been prepared by the activated combustion high velocity air fuel (AC-HVAF) and high velocity oxygen fuel (HVOF) processes. The microstructure and wear resistance of the amorphous coatings are comparatively studied. The wear volume loss of the AC-HVAF coating is approximately seven times less than that of the HVOF coating, indicating that the AC-HVAF coating exhibits better wear resistance. Detailed analysis on the worn surface indicates that the enhanced wear resistance of the AC-HVAF coating is mainly attributed to the formation of a more stable oxide tribolayer and smoother worn surface, which result from the dense and complete amorphous microstructure of the AC-HVAF coating. The wear mechanism of the amorphous coatings is dominated by oxidation wear.
               
Click one of the above tabs to view related content.