LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Creep resistance of Fe–Ni–Cr heat resistant alloys for reformer tube applications

Photo from wikipedia

Relations between microstructure, phase transformations and creep resistance of austenitic Fe–Ni–Cr alloys are investigated. As-cast alloys with different silicon contents and an ex-service tube are submitted to laboratory agings to… Click to show full abstract

Relations between microstructure, phase transformations and creep resistance of austenitic Fe–Ni–Cr alloys are investigated. As-cast alloys with different silicon contents and an ex-service tube are submitted to laboratory agings to trigger specific phase transformations, and subsequently creep-tested at 950°C under stresses of 24–48 MPa. As-cast microstructures contain interdendritic chromium-rich M7C3 carbides with niobium-rich MC carbides. After aging at 950°C, primary M7C3 carbides transform into chromium-rich M23C6 carbides, associated to a loss in creep strength. The G phase present in the ex-service alloy is reversed into MC carbides by a heat treatment at 1100°C, associated to a slight decrease in creep resistance. Besides, the addition of silicon is highly detrimental to creep strength. Results can be used for alloy design.

Keywords: tube; heat resistant; resistance heat; resistance; creep resistance

Journal Title: Materials Science and Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.