LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of solute content on microstructure of nano precipitate-fine grain synergistically reinforced copper alloys

Photo from wikipedia

ABSTRACT Alloying of Fe, Co was reported to tailor microstructure of copper alloys into a nanoprecipitate-fine grain (NPFG) structure, i.e. nano-sized iron-rich precipitates dispersed inside refined grains. Here, we investigate… Click to show full abstract

ABSTRACT Alloying of Fe, Co was reported to tailor microstructure of copper alloys into a nanoprecipitate-fine grain (NPFG) structure, i.e. nano-sized iron-rich precipitates dispersed inside refined grains. Here, we investigate the solute effect of Sn, Zn on NPFG structure in as-cast copper samples. Mechanisms are proposed to account for the solute effect on precipitate and grain features. Solutes restrict coarsening but facilitate undesirable morphology transition from spherical to angular of iron-rich precipitates. Meantime, solutes allow more precipitates to be active in the nucleation of copper and consequently induce finer grains. Minor Sn is added to optimise NPFG structure and leads to an excellent strength–ductility combination in Cu–1.5Fe–0.1Sn (wt-%) alloy. This work provides a solute-alloying strategy to achieve desired mechanical properties in metals. GRAPHICAL ABSTRACT

Keywords: fine grain; copper; copper alloys; grain; nano; microstructure

Journal Title: Materials Science and Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.