LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly improved dielectric behaviour of ferronematic nanocomposite for display application

Photo by jannerboy62 from unsplash

ABSTRACT We report the investigation of influence of nickel zinc ferrite magnetic nanoparticles (NZFO (Ni0.5Zn0.5Fe2O4)) on phase transition, optical and dielectric properties in a nematic liquid crystal (NLC). The interaction… Click to show full abstract

ABSTRACT We report the investigation of influence of nickel zinc ferrite magnetic nanoparticles (NZFO (Ni0.5Zn0.5Fe2O4)) on phase transition, optical and dielectric properties in a nematic liquid crystal (NLC). The interaction of NZFO nanoparticles with NLC was confirmed by the formation of ferronematic droplets due to the transfer of magnetic orientational effect onto the underlying NLC matrix. The doping results in shift of nematic to isotropic transition to low-temperature region. An enhancement in the value of refractive index is observed in the nematic region after the addition of NZFO nanoparticles. The dielectric constant of NLC was remarkably enhanced by 10 times after doping, which is found to be maximum at 0.1 wt% concentration of NZFO nanoparticles. The decrease in the value of dissipation factor in low-frequency region shows that the magnetic nanoparticles are able to trap ionic impurities effectively. The obtained results suggest that the optimum amount of doping concentration is 0.1 wt% of NZFO nanoparticles in NLC due to high dielectric constant with low dissipation factor and high refractive index with high dispersive power at room temperature. Graphical Abstract

Keywords: nzfo nanoparticles; highly improved; dielectric behaviour; nzfo; improved dielectric; behaviour ferronematic

Journal Title: Liquid Crystals
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.