ABSTRACT A cholesteric liquid crystal (CLC) – cholesteryl tridecylate (X-20) was doped with nanoparticles of shungite carbon (Sh) to effectively improve some physicochemical properties of the CLC matrix for the… Click to show full abstract
ABSTRACT A cholesteric liquid crystal (CLC) – cholesteryl tridecylate (X-20) was doped with nanoparticles of shungite carbon (Sh) to effectively improve some physicochemical properties of the CLC matrix for the further use in electronic devices. The influence of Sh (concentration of 0.005 and 0.02 wt. %) on phase transition temperatures of X-20 was studied. Addition of 0.005 wt. % of Sh shifts phase transition temperatures upward, while the concentration increase to 0.02 wt. % leads to the opposite effect. These data were taken into account during the study of dielectric properties in different phase states. The dielectric properties were studied in the frequency range from 20 Hz to 10 MHz. Only for the system X-20/Sh (0.02 wt. %), dispersion of the dielectric permittivity was observed. The dispersion was caused by the appearance of additional relaxation processes and it was substantially more extended than the classical Debye theory suggests. The results of the research show that the ‘CLC – Sh nanoparticles’ composites can be used as promising materials to increase the efficiency of radio electronics devices. Graphical Abstract
               
Click one of the above tabs to view related content.