ABSTRACT Internal cured concrete (ICC) has been recently used in the local and international construction markets. ICC contains surplus amount of water to compensate the shrinkage of the mix and… Click to show full abstract
ABSTRACT Internal cured concrete (ICC) has been recently used in the local and international construction markets. ICC contains surplus amount of water to compensate the shrinkage of the mix and the volumetric changes which result in early-age cracking of concrete. Concrete cracking is a direct result of the shrinkage of the water–cement paste during early stages of the hydration process and continues for a significant amount of time during the life span of the concrete section. Early-stage shrinkage, prior to the concrete hardening, is associated with volumetric changes, until final setting is achieved. Afterward, the reduction in cement paste particle size results in increased voids within the concrete structure. These voids result in increased permeability, additional sulfate and chloride attacks on steel reinforcement, and internal tensile stresses in concrete, which result in significant cracking. ICC uses the additional water added to the mix in counteracting the reduced volume of the concrete. Several techniques are used for internal curing (IC). In this research, water-saturated lightweight aggregates (LWAs) are used in partial replacement of normal weight aggregate as a source of additional water. LWA is submerged in water prior to concrete mixing to absorb a significant amount of water, which is stored within the LWA particles. Once added to the mix, the water is gradually desorbed and compensates the water losses during hydration. Hence, it counteracts the shrinkage induced. Different ICC mixes are developed in this research using two different sizes of LWA, and supplementary binding materials are used to improve compressive strength. ICC compressive strength and reduced shrinkage attained are presented. ICC mixes developed in this research can be successfully used in pouring highway segments and bridge decks with lower cracks and reduced life cycle cost due to reduced maintenance.
               
Click one of the above tabs to view related content.