LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biosorption of Cr(VI) from wastewater using Sorghastrum Nutans L. Nash

Photo by charleypangus from unsplash

ABSTRACT Sorghastrum Nutans L. Nash is used as an adsorbent for the removal of Cr(VI) from wastewater. Adsorption coupled reduction i.e. indirect reduction is the mechanism of Cr(VI) removal by… Click to show full abstract

ABSTRACT Sorghastrum Nutans L. Nash is used as an adsorbent for the removal of Cr(VI) from wastewater. Adsorption coupled reduction i.e. indirect reduction is the mechanism of Cr(VI) removal by the biomaterial. The adsorbent surface became highly positively charged at lower pH, adsorption rate of Cr(VI) is faster and reduction reaction also accelerates at lower pH since the binding of negatively charged Cr(VI) ion species to the cationic groups is enhanced and protons take part in this reaction. The adsorbent is characterised by using XRD, FTIR, SEM and EDAX analysis. OH bending, CN stretching/bending and NH stretching play a major role in Chromium adsorption. Experimental values follow pseudo-second order reaction and Langmuir adsorption isotherm. Surface diffusion is the rate controlling mechanism for the process. The maximum percentage of Cr(VI) removal obtained is 75.5% with 7 g/L dosage at pH 1.3 and adsorbate concentration was 100 mg/L. From the normal probability, residual, contour, 3D surface, main effect and interaction plot along with t-test, ANOVA, and F-test, it is observed that pH has the most significant effect on the percentage removal followed by adsorbent dosage and time. The adsorbate concentration has the least effects and interaction effects are found to be significant.

Keywords: sorghastrum nutans; adsorption; nutans nash; wastewater using; biosorption wastewater

Journal Title: Chemistry and Ecology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.