LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural lung abnormalities on computed tomography correlate with asthma inflammation in bronchoscopic alveolar lavage fluid

Photo from wikipedia

Abstract Objective: Image scoring systems have been developed to assess the severity of specific lung abnormalities in patients diagnosed with various pulmonary diseases except for asthma. A comprehensive asthma imaging… Click to show full abstract

Abstract Objective: Image scoring systems have been developed to assess the severity of specific lung abnormalities in patients diagnosed with various pulmonary diseases except for asthma. A comprehensive asthma imaging scoring system may identify specific abnormalities potentially linking these to inflammatory phenotypes. Methods: Computed tomography (CT) images of 88 children with asthma (50 M/38 F, mean age 7.8 ± 5.4 years) acquired within 12 months of bronchoscopic alveolar lavage fluid (BALF) sampling that assessed airway inflammation cell types were reviewed along with CT images of 49 controls (27 M/22 F, mean age 3.4 ± 2.2 years). Images were scored using a comprehensive scoring system to quantify bronchiectasis (BR), bronchial wall thickening (BWT), ground glass opacity, mucus plugging (MP), consolidations, linear densities (LD), and air trapping (AT). Each category was scored 0–2 in each of six lobar regions (with lingula separated from left upper lobe). Results: Absolute average overall scores of the controls and children with asthma were 0.72 ± 1.59 and 5.39 ± 5.83, respectively (P < 0.0001). Children with asthma scored significantly higher for BR (N = 20, 0.33 ± 0.80, P = 0.0002), BWT (N = 28, 0.72 ± 1.40, P < 0.0001), MP (N = 28, 0.37 ± 1.12, P = 0.0052), consolidation (N = 31, 0.67 ± 1.22, P < 0.0001), LD (N = 58, 1.12 ± 1.44, P < 0.0001), and AT (N = 52, 1.78 ± 2.31, P < 0.0001). There was a significant difference between the BR score of children with positive inflammatory response in BALF (N = 53) and those who were negative for airway inflammation cells (0.14 ± 0.36, P = 0.040). Conclusions: Significant lung structural abnormalities were readily identified on CT of children with asthma, with image differentiation of those with an inflammatory response on BALF. Chest imaging demonstrates potential as a noninvasive clinical tool for additional characterization of asthma phenotypes.

Keywords: lung abnormalities; computed tomography; children asthma; inflammation; bronchoscopic alveolar; asthma

Journal Title: Journal of Asthma
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.