LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A smartphone-based algorithm comprising cough analysis and patient-reported symptoms identifies acute exacerbations of asthma: a prospective, double blind, diagnostic accuracy study

Photo from wikipedia

Abstract Objective: Early and accurate recognition of asthma exacerbations reduces the duration and risk of hospitalization. Current diagnostic methods depend upon patient recognition of symptoms, expert clinical examination, or measures… Click to show full abstract

Abstract Objective: Early and accurate recognition of asthma exacerbations reduces the duration and risk of hospitalization. Current diagnostic methods depend upon patient recognition of symptoms, expert clinical examination, or measures of lung function. Here, we aimed to develop and test the accuracy of a smartphone-based diagnostic algorithm that analyses five cough events and five patient-reported features (age, fever, acute or productive cough and wheeze) to detect asthma exacerbations.Methods: We conducted a double-blind, prospective, diagnostic accuracy study comparing the algorithm with expert clinical opinion and formal lung function testing. Results: One hundred nineteen participants >12 years with a physician-diagnosed history of asthma were recruited from a hospital in Perth, Western Australia: 46 with clinically confirmed asthma exacerbations, 73 with controlled asthma. The groups were similar in median age (54yr versus 60yr, p=0.72) and sex (female 76% versus 70%, p=0.5). The algorithm’s positive percent agreement (PPA) with the expert clinical diagnosis of asthma exacerbations was 89% [95% CI: 76%, 96%]. The negative percent agreement (NPA) was 84% [95% CI: 73%, 91%]. The algorithm’s performance for asthma exacerbations diagnosis exceeded its performance as a detector of patient-reported wheeze (sensitivity, 63.7%). Patient-reported wheeze in isolation was an insensitive marker of asthma exacerbations (PPA=53.8%, NPA=49%). Conclusions: Our diagnostic algorithm accurately detected the presence of an asthma exacerbation as a point-of-care test without requiring clinical examination or lung function testing. This method could improve the accuracy of telehealth consultations and might be helpful in Asthma Action Plans and patient-initiated therapy.

Keywords: patient reported; asthma exacerbations; accuracy; smartphone based

Journal Title: Journal of Asthma
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.