LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Changes in chemical structures and molar mass parameters of birch wood powder by ethylene diamine treatment

Abstract It is necessary to delignify wood samples and treat them with ethylene diamine (EDA) before they are dissolved in 8% (w/v) lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) prior to size-exclusion chromatography (SEC)… Click to show full abstract

Abstract It is necessary to delignify wood samples and treat them with ethylene diamine (EDA) before they are dissolved in 8% (w/v) lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) prior to size-exclusion chromatography (SEC) analysis. In the present study, the effects of delignifying birch wood powder 0–3 times with NaClO2 and subsequently treating it with EDA on its solubility in 8% (w/v) LiCl/DMAc and its SEC data. The neutral sugar composition of the birch powder was almost unaffected by either delignification or treatment with EDA. Treatment of the birch powder with EDA resulted in 28% solubilities in 8% (w/v) LiCl/DMAc. Approximately 11% of cellulose molecules in the birch wood powder was dissolved, and detected as a high-molar-mass (HMM) fraction in the SEC elution pattern. Each single delignification treatment increased the solubility in 8% (w/v) LiCl/DMAc to 68–74% after EDA treatment. Based on the glucose contents of the delignified samples, almost all cellulose molecules in the delignified samples were dissolved in 8% (w/v) LiCl/DMAc after EDA treatment, and detected as the HMM fractions in the SEC elution patterns. The HMM cellulose molecules in the EDA-treated birch powder had linear random-coil conformations in 1% (w/v) LiCl/DMAc. However, the SEC data suggest that there probably were some chemical linkages between the HMM cellulose molecules and lignin or NaClO2-treated lignin fragments in the HMM fractions.

Keywords: birch wood; licl dmac; wood powder; powder; treatment

Journal Title: Journal of Wood Chemistry and Technology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.