LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intrinsic objective Bayesian estimation of the mean of the Tweedie family

Photo by gcalebjones from unsplash

ABSTRACT The Tweedie family, which is classified by the choice of power unit variance function, includes heavy tailed distributions, and as such could be of significant relevance to actuarial science.… Click to show full abstract

ABSTRACT The Tweedie family, which is classified by the choice of power unit variance function, includes heavy tailed distributions, and as such could be of significant relevance to actuarial science. The class includes the Normal, Poisson, Gamma, Inverse Gaussian, Stable and Compound Poisson distributions. In this study, we explore the intrinsic objective Bayesian point estimator for the mean value of the Tweedie family based on the intrinsic discrepancy loss function – which is an inherent loss function arising only from the underlying distribution or model, without any subjective considerations – and the Jeffreys prior distribution, which is designed to express absence of information about the quantity of interest. We compare the proposed point estimator with the Bayes estimator, which is the posterior mean based on quadratic loss function and the Jeffreys prior distribution. We carry a numerical study to illustrate the methodology in the context of the Inverse Gaussian model, which is fully unexplored in this novel context, and which is useful to insurance contracts.

Keywords: mean; intrinsic objective; family; tweedie family; objective bayesian; function

Journal Title: Scandinavian Actuarial Journal
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.