ABSTRACT The purpose of mixture experiments is to explore the optimum blends of mixture components, which will provide the desirable response characteristics in finished products. D-optimal minimal designs have been… Click to show full abstract
ABSTRACT The purpose of mixture experiments is to explore the optimum blends of mixture components, which will provide the desirable response characteristics in finished products. D-optimal minimal designs have been considered for a variety of mixture models, including Scheffé's linear, quadratic, and cubic models. Usually, these D-optimal designs are minimally supported since they have just as many design points as the number of parameters. Thus, they lack the degrees of freedom to perform the lack-of-fit (LOF) tests. Also, the majority of the design points in D-optimal minimal designs are on the boundary: vertices, edges, or faces of the design simplex. In this article, extensions of the D-optimal minimal designs are developed for a general mixture model to allow additional interior points in the design space to enable prediction of the entire response surface. Also a new strategy for adding multiple interior points for symmetric mixture models is proposed. We compare the proposed designs with Cornell (1986) two 10-point designs for the LOF test by simulations.
               
Click one of the above tabs to view related content.