ABSTRACT Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine, machine learning, and credit scoring. The receiver operating characteristic (ROC) surface is a useful tool… Click to show full abstract
ABSTRACT Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine, machine learning, and credit scoring. The receiver operating characteristic (ROC) surface is a useful tool to assess the ability of a diagnostic test to discriminate among three-ordered classes or groups. In this article, nonparametric predictive inference (NPI) for three-group ROC analysis for ordinal outcomes is presented. NPI is a frequentist statistical method that is explicitly aimed at using few modeling assumptions, enabled through the use of lower and upper probabilities to quantify uncertainty. This article also includes results on the volumes under the ROC surfaces and consideration of the choice of decision thresholds for the diagnosis. Two examples are provided to illustrate our method.
               
Click one of the above tabs to view related content.