ABSTRACT We explore the performance accuracy of the linear and quadratic classifiers for high-dimensional higher-order data, assuming that the class conditional distributions are multivariate normal with locally doubly exchangeable covariance… Click to show full abstract
ABSTRACT We explore the performance accuracy of the linear and quadratic classifiers for high-dimensional higher-order data, assuming that the class conditional distributions are multivariate normal with locally doubly exchangeable covariance structure. We derive a two-stage procedure for estimating the covariance matrix: at the first stage, the Lasso-based structure learning is applied to sparsifying the block components within the covariance matrix. At the second stage, the maximum-likelihood estimators of all block-wise parameters are derived assuming the doubly exchangeable within block covariance structure and a Kronecker product structured mean vector. We also study the effect of the block size on the classification performance in the high-dimensional setting and derive a class of asymptotically equivalent block structure approximations, in a sense that the choice of the block size is asymptotically negligible.
               
Click one of the above tabs to view related content.