ABSTRACT Whenever there is auxiliary information available in any form, the researchers want to utilize it in the method of estimation to obtain the most efficient estimator. When there exists… Click to show full abstract
ABSTRACT Whenever there is auxiliary information available in any form, the researchers want to utilize it in the method of estimation to obtain the most efficient estimator. When there exists enough amount of correlation between the study and the auxiliary variables, and parallel to these associations, the ranks of the auxiliary variables are also correlated with the study variable, which can be used a valuable device for enhancing the precision of an estimator accordingly. This article addresses the problem of estimating the finite population mean that utilizes the complementary information in the presence of (i) the auxiliary variable and (ii) the ranks of the auxiliary variable for non response. We suggest an improved estimator for estimating the finite population mean using the auxiliary information in the presence of non response. Expressions for bias and mean squared error of considered estimators are derived up to the first order of approximation. The performance of estimators is compared theoretically and numerically. A numerical study is carried out to evaluate the performances of estimators. It is observed that the proposed estimator is more efficient than the usual sample mean and the regression estimators, and some other families of ratio and exponential type of estimators.
               
Click one of the above tabs to view related content.