ABSTRACT Non parametric approaches to classification have gained significant attention in the last two decades. In this paper, we propose a classification methodology based on the multivariate rank functions and… Click to show full abstract
ABSTRACT Non parametric approaches to classification have gained significant attention in the last two decades. In this paper, we propose a classification methodology based on the multivariate rank functions and show that it is a Bayes rule for spherically symmetric distributions with a location shift. We show that a rank-based classifier is equivalent to optimal Bayes rule under suitable conditions. We also present an affine invariant version of the classifier. To accommodate different covariance structures, we construct a classifier based on the central rank region. Asymptotic properties of these classification methods are studied. We illustrate the performance of our proposed methods in comparison to some other depth-based classifiers using simulated and real data sets.
               
Click one of the above tabs to view related content.