ABSTRACT Likelihood-ratio tests (LRTs) are often used for inferences on one or more logistic regression coefficients. Conventionally, for given parameters of interest, the nuisance parameters of the likelihood function are… Click to show full abstract
ABSTRACT Likelihood-ratio tests (LRTs) are often used for inferences on one or more logistic regression coefficients. Conventionally, for given parameters of interest, the nuisance parameters of the likelihood function are replaced by their maximum likelihood estimates. The new function created is called the profile likelihood function, and is used for inference from LRT. In small samples, LRT based on the profile likelihood does not follow χ2 distribution. Several corrections have been proposed to improve LRT when used with small-sample data. Additionally, complete or quasi-complete separation is a common geometric feature for small-sample binary data. In this article, for small-sample binary data, we have derived explicitly the correction factors of LRT for models with and without separation, and proposed an algorithm to construct confidence intervals. We have investigated the performances of different LRT corrections, and the corresponding confidence intervals through simulations. Based on the simulation results, we propose an empirical rule of thumb on the use of these methods. Our simulation findings are also supported by real-world data.
               
Click one of the above tabs to view related content.