ABSTRACT This paper considers a single server queueing system with working breakdowns and delaying repair under a Bernoulli-schedule-controlled policy. At a breakdown instant, the system either goes to repair period… Click to show full abstract
ABSTRACT This paper considers a single server queueing system with working breakdowns and delaying repair under a Bernoulli-schedule-controlled policy. At a breakdown instant, the system either goes to repair period immediately with probability p, or continues to provide auxiliary service for the current customers with probability q = 1 − p. While the system resides in the auxiliary service period, it may go to repair period if there is no customer at the epoch of service completion or the occurrence of breakdown. By using the matrix analytic method and the spectral expansion method, we respectively obtain the steady state distribution to make the straightforward computation of performance measures and the Laplace-Stieltjes transform of the stationary sojourn time of an arbitrary customer. In addition, some numerical examples are presented to show the impact of parameters on the performance measures.
               
Click one of the above tabs to view related content.