LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust-regression-type estimators for improving mean estimation of sensitive variables by using auxiliary information

Photo by stayandroam from unsplash

Abstract In case of sensitive research, estimation of mean is a major concern in survey studies and regression estimators utilizing traditional regression coefficient are the most favored choices for it.… Click to show full abstract

Abstract In case of sensitive research, estimation of mean is a major concern in survey studies and regression estimators utilizing traditional regression coefficient are the most favored choices for it. Recently, Zaman and Bulut [2018. Modified ratio estimators using robust regression methods. Communications in Statistics - Theory and Methods, DOI:10.1080/03610926.2018.1441419] have developed a class of ratio-type estimators for the mean estimation of non-sensitive variable utilizing robust regression coefficients. In this paper, we have generalized their family of estimators to the case where the study variable refers to sensitive issues which produces measurement errors due to non-responses and/or untruthful reporting. These errors may be reduced by enhancing respondent cooperation through scrambled response methods that mask the true value of the sensitive variable. Hence, two scrambled response models Pollock and Bek (1976), Bar-Lev, Bobovitch, and Boukai (2004) are discussed for the purposes of this article. We have also developed a class of robust-regression type estimators in case of sensitive research. Some estimators belonging to the class are shown and the mean square errors are determined. Theoretical and empirical illustration is done through real and artificial data sets for assessing the performance of adapted and proposed class.

Keywords: robust regression; type estimators; mean estimation; regression

Journal Title: Communications in Statistics - Theory and Methods
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.